**sec**[arccot (-6)] the question is: what is the**sec**ant of that arc whose cot is (-6)? thus let [arccot (-6)] = y then cot y = - 6 now you have to rewrite**sec**y in terms of cot y, that is:**sec**²y = (1/cos²y...2 Answers · Science & Mathematics · 08/06/2008

If the

**SEC**keeps the other teams that are in the ... will recruit better as members of the**SEC**but I think that remains to be seen. ...8 Answers · Sports · 22/10/2011

∫

**sec**^3 x dx ∫**sec**x**sec**^2 x dx let u =**sec**x; dv =**sec**^2 x dx du =**sec**x tan x; v = tan x**sec**x tan x...point we have... ∫**sec**^3 x dx =**sec**x tan x - ∫**sec**^3 x dx - ∫**sec**x dx 2∫**sec**^3 x dx =**sec**x tan x - ∫**sec**x dx 2∫**sec**^3...1 Answers · Science & Mathematics · 12/03/2008

**sec**(t) = -5 First, let's express this as cosine. Note that**sec**(t) = 1/cos(t), so 1/cos(t) = -5. Take the reciprocal of both sides...4 Answers · Science & Mathematics · 12/02/2007

**SEC**had the best non-conference record of any conferrence**SEC**had the best record vs BCS conference teams**SEC**had the most games played vs out of conference BCS...13 Answers · Sports · 17/01/2008

**sec**^2(θ) + csc^2(θ) --> Let**sec**^2(θ) = 1 / cos^2(θ) and csc^2(θ) = 1 / sin^2(θ) [ 1 / cos^2...numerator. 1 / [ sin^2(θ)cos^2(θ) ] --> Let 1 / cos^2(θ) =**sec**^2(θ) ANSWER:**sec**^2(θ) / sin^2(θ) Hope that...2 Answers · Science & Mathematics · 29/06/2012

g(x) = y =

**sec**(x) dy ⁄ dx =**sec**(x) • tan(x) ... set to zero for min/max 0...be zero. First Term Solution:**sec**(x) = 0 1 ⁄ cos(x) = 0 ... no solution since cos(x) never ...2 Answers · Education & Reference · 22/04/2012

Triple

**sec**is a strong, clear orange-flavored liqueur. It is sweet..., Cointreau, and Grand Marnier are also triple secs . While triple**sec**usually would mean "triple dry", it here means...5 Answers · Food & Drink · 22/03/2008

[tan(t) +

**sec**(t) - 1] / [tan(t) -**sec**(t) + 1] = tan(t) +**sec**(t...left hand side (LHS). LHS = [tan(t) +**sec**(t) - 1] / [tan(t) -**sec**(t) + 1] Change everything...t) By definition, LHS = tan(t) +**sec**(t) = RHS1 Answers · Science & Mathematics · 02/03/2007

**sec**(x) - sin(x) = [tan^2(x) + cos^2(x)] / [**sec**(x) + sin(x)] LS:**sec**(x) - sin(x) = [**sec**(x) - sin...x) = 1 dividing through by cos^2(x) tan^2(x) + 1 =**sec**^2(x) tan^2(x) =**sec**^2(x) - 1 resubstituting tan^2(x): =**sec**...2 Answers · Science & Mathematics · 30/11/2009