There are two common (but not

**the**only) methods**to**solve this. First method: (By formula) Note that**the**formula for**the area of a sector**is 1/2 * r^2 * theta, where r is**the**radius**of the**circle (which ...1 Answers · Science & Mathematics · 03/07/2013

**The**methid for**area of a sector**is**find the**fraction (angle required)/(360) x (**area of**full circle) Or if in ...2 Answers · Science & Mathematics · 02/12/2014

...this is

**a sector**, it is**a**fraction**of a**complete circle. You need**to find the**fraction**of a**circle. It is 34 / 360 (based on**the**angle). So**the area of**this**sector**is: 34 / 360 x pi x r^2 = 34 / 360 x 3.1416 x 5 ^ 2 = 7.42 cm(...6 Answers · Science & Mathematics · 20/04/2008

...triangle OAB.

**The sector**is**the area of the**circle x (120 degrees...3 Then use trigonometry**to find the area of**triangle OAB...therefore**the**angles at both**A**and B are both 30...2 Answers · Science & Mathematics · 29/06/2010

...13.1 b) Angle θ = 0.5 rad => the arc , a = 16*0.5 = 8 ... The area is the a *r/2**) = 8*16/2 = 64 **) think of a triangle b*h/2 ---> a *r/2

2 Answers · Science & Mathematics · 30/11/2014

**A**presumed answer would be**to find the area of**each section and add**the**areas up**to find the**total**area of the**shape. But**the**question is very vague.2 Answers · Science & Mathematics · 03/05/2008

**Area of**triangle = (b * h) /2 where b - base**of the**triangle and h - height**of the**triangle**Area of a sector**= pi * r^2 * theta / 360 where pi = 3.14 r - radius**of the sector**theta - angle**of the sector**1 Answers · Education & Reference · 18/03/2014

...pi r^2 Your

**sector**is 1/12 th**of the**circle [ (pi/6) / (2 pi)] so**area of the sector**is pi r^2 / 12 Since r = 5**area**= 25 pi / 12 Likewise...2 Answers · Science & Mathematics · 15/01/2008

**the area of a sector**=**the**number**of**degrees ***the area of the**circle square**the**radius, multiply...**of**degrees and you get that**the**number**of**degrees**of the sector**is 26.6666667 degrees.2 Answers · Education & Reference · 06/05/2013

...radius, which is all you need

**to find the area of the**circle. You square**the**radius...**the**whole circle, and**the area of the sector**. You also know that**the**angle**of a**full circle is 360 degrees...2 Answers · Education & Reference · 25/03/2013