**a**=pie r^2**a**=3.14 (5^2)**a**=3.14 (25)**a**= 78.5 this is the**area of**the whole**circle**which is 360, but you only want**a**30 degree section so 360/30=12 you only want 1/12**of**the**area a**= 78.5/12**a**= 6.542 Answers · Education & Reference · 22/10/2008

Make a proportion: arc length / full circumference = sector area / area of whole circle 12/ (2πr) = 50 / (π r^2) cross multiply 100πr = 12πr^2 divide by πr 100 = 12r...

2 Answers · Education & Reference · 20/02/2011

**Area of a Sector**= Central Angle/360 deg](**Area of Circle**)**Area of a Sector**= (Central Ange/360 deg)(pi)(r^2)**Area of a Sector**...2 Answers · Education & Reference · 12/07/2009

Remember

**area of a circle**(**A**) = pi times radius squared.**A**= pi r^2 That...by the 'degree fraction'.**A**= pi 7^2**A**= 49 pi Sect(**A**) = 49 pi x 35/360 Cancel down by '5' Sect(**A**) 49...1 Answers · Education & Reference · 27/02/2013

**Area of**complete**circle**pi*r^2 That includes an angle**of**2*pi radians at the...1 Answers · Education & Reference · 19/08/2012

...inside

**of a circle**. The diagonal**of**the square is also the diameter**of**the**circle**. Finding the**Area of a Sector**Find out how big the**sector**is in terms**of**degrees...12 Answers · Education & Reference · 09/11/2009

Hi K L = ]],

**A sector**is basically**a**portion**of a circle**. In your case, the**sector**takes up 1/4**of**the**area of**the**circle**, meaning it occupies**a**quarter**of**the**circle**. Because...1 Answers · Education & Reference · 16/10/2011

A = (315/360)πr² A = (315/360)π(2.5)² A = 17.18 ft² m02142014

1 Answers · Education & Reference · 20/02/2014

...2)*(arc length)*(radius) .. radius = 2*( sector area )/(arc length) ... <...calculus, you find that the analogy with a triangle actually holds up. Consider, for example, the area of the entire circle is π*r^2 = (1/2)*(2πr...

2 Answers · Education & Reference · 18/01/2013

**Sector Area**in degrees = (degrees)/360 * 3...r^2 but you need to know the degrees**of**the angle! length**of**an arc = degrees...size**of**the angle at the center**of**your**circle**!2 Answers · Education & Reference · 14/06/2012