##### Ad

related to: R

0.2 +

**r**= 0.2**r**− 0.06 + 0.3**r**Fist, let's simplify the**r**ight side side:**r**+ 0.2 = 0.5**r**− 0.06 Next, isolate**r**and simplify. (**r**+ 0.2) - 0.5**r**- 0.2...12 Answe

**r**s · Science & Mathematics · 16/10/2007**r**- 2s = 14 Solve for s: Subtract**r**off both sides: -2s = 14 -**r**Multiply both sides by -1 to avoid trouble later: 2s =**r**- 14 Divide by 2: s = (**r**- 14)/25 Answe

**r**s · Science & Mathematics · 21/09/2012**r**= (0.001 * t^4 - 4t + 100)^(1/2)**r**^2 = 0.001 * t^4 - 4t + 100 2r * dr/dt = 0.001 * 4 * t^3 - 4 dr/dt...004 * t^3 - 4 4 = 0.004 * t^3 4 / 0.004 = t^3 1000 = t^3 10 = t**r**^2 = 0.001 * t^4 - 4t + 100**r**^2 = 0.001 * 10000 - 4 * 10 + 100**r**^2...3 Answe

**r**s · Science & Mathematics · 23/12/2015**r**- 5 = 6.2**r**= 6.2 + 5**r**= 11.26 Answe

**r**s · Science & Mathematics · 07/11/2010lim ((a^

**r**+ b^**r**)/2)^(1/**r**) (as**r**--> 0) LN lim = lim LN lim LN ((a^**r**+ b^**r**)/2)^(1/**r**) = = lim (1/**r**)LN ((a^**r**+ b^**r**)/2) (as**r**--> 0) is...3 Answe

**r**s · Science & Mathematics · 15/10/2012The answer is

**r**= -.5 I didn't know if you wanted the explanation or not but I...: 2r=-1 Divide 2r by both sides and the answer is**r**=-1/2 or -.52 Answe

**r**s · Science & Mathematics · 14/10/2010Since

**r**^2 = (-**r**)^2, we can assume without loss of gene**r**ality that**r**≥ 0. Fo**r**each fixed**r**≥ 0, A(**r**) is a ci**r**cle cente**r**ed at (0, 0) with**r**adius**r**. (When**r**= 0, then A(0) is simply {(0, 0)}.) Hence...1 Answe

**r**s · Science & Mathematics · 27/03/2012I = (2V/

**R**) + 2r I - (2V/**R**) = 2r**r**= (1/2) * [I - (2V/**R**... - IR**r**= (2V - IR) / 2I**r**= (V/I) - (**R**/2)3 Answe

**r**s · Science & Mathematics · 16/01/2014**R**is an equivalence relation on**R**² follows from the fact that equality is an equivalence relation on**R**¹. (a; b)**R**(a; b) since a=a, so**R**is reflexive if (a; b)**R**(c; d) then...2 Answe

**r**s · Science & Mathematics · 20/10/2012An ideal in

**r**is a subset I of**r**such that, for any element x in**r**and any element i...become easier to check. For (a), if we take any function y(x) from**r**and any function z(x) from the proposed subset, we see that for x = 1, z(x...1 Answe

**r**s · Science & Mathematics · 05/03/2012