##### Ad

related to**K.C**

Sort by

- Relevance
- |Time

...point at which the derivative changes sign. This has ONE.

**C**) only for one particular value of**k**D) inflection point is a point on a continuous plane curve at which the curve...1 Answers · Science & Mathematics · 19/06/2019

...the equation for the parabola in vertex form: y = (x - h)² +

**k**We have: y = x² + 6x + 10 To complete the...coefficient in front of x --> 6 b. Halve it --> 3**c**. Square it --> 3² = 9 d. Add it and...2 Answers · Science & Mathematics · 15/06/2019

...an integer x = 2π - (π/6) + 2kπ x = (11π/6) + 2kπ x = π + (π/6) + 2kπ → where

**k**is an integer x = (7π/6) + 2kπ →**C**) answer4 Answers · Science & Mathematics · 11/06/2019

...

**k**±a) length of major axis = 2a co-vertices (h±b,**k**) foci (h,**k**±**c**), c² = a²-b² Apply your given information...4 Answers · Science & Mathematics · 29/05/2019

...kt), you get 2k^2 + 5k + 2 = 0 => (2k + 1)(

**k**+ 2) = 0 =>**k**= -1/2 or -2. So X_h = Ae^(-1/2 t...the "particular" solution), assume it has the form**C**sin(t) + D cos(t). Use the method of undetermined...2 Answers · Science & Mathematics · 26/05/2019

... have a particular result, with probability p for that result in each case, is:

**C**(n,**k**) * p^**k*** (1-p)^(n-**k**) ...where**C**(n,**k**) is the number of ...3 Answers · Science & Mathematics · 26/05/2019

...

**k**) vertices (h,**k**±a) co-vertices (h±b,**k**) foci (h,**k**±**c**), c² = a²-b² (y-10)²/10² + (x-5)²...4 Answers · Science & Mathematics · 21/05/2019

x^2 - kx + 4 = 0 apply the discriminant formula a = 1 , b = -

**k**,**c**= 4 b^2 - 4ac = 0 (-**k**)^2 - 4(1)(4) = 0**k**^2 - 16 = 0**k**^2 = 16**k**= √(16)**k**= 4 answer// x^2 - 4x + 4 = 0 (x - 2)(x - 2) = 0 x = 28 Answers · Science & Mathematics · 19/05/2019

... fail within a 5 hour flight? Binomial Problem: {∑

**C**(3,**k**)(5/10000)^**k**(1-5/10000)^(3-**k**) from**k**= 1 to**k**= 3 } = 11994001/8000000000 = 0.0014992501251 Answers · Science & Mathematics · 16/05/2019

Note the following: 1 - 2[1/2 + Ce^(-2t) ] = 1 - 1 - 2Ce^(-2t) = -2Ce^(-2t) = dy/dt Basically, you wanted to show that if we plug in the given y(t) into the right side of the equation, we get its derivative.

2 Answers · Science & Mathematics · 08/05/2019

##### Ad

related to**K.C**