Sort by

- Relevance
- |Time

If

**k**-2 divides 2k,**k**-2 ≠ 0, then there is an integer i such that 2k = (**k**-2)i Solving for**k**gives... of i less than or equal to 1 that produce**k**≥ 3. Therefore the only ...1 Answers · Science & Mathematics · 20/03/2009

Let

**K**be a convex subset of R^p and let x,y be in the closure of**K**. Then there exist sequences (x_n), (y_n) of points in**K**such that lim x_n = x and lim y_n = y. The line segment between x_n and y_n...2 Answers · Science & Mathematics · 20/01/2012

∫(x = 0 to 1) x^

**k**ln x dx = ∫(∞ to 0) (e^w)^**k*** w * (e^w...;==> x = e^w = -∫(w = 0 to ∞) we^((**k**+1)w) dw = -∫(w = 0 to ∞) we^((**k**+1)w) dw...1)t))] = (-1/(**k**+1)^2) * [1 + lim(t→∞) -e^((**k**+1)t)] = (-1/(**k**+1)^2) * (1 + 0), since**k**+1...3 Answers · Science & Mathematics · 10/06/2015

**k**(**k**+1)(2k+1)/6 must be divisible by 100 means**k**(**k**+1)(2k+1) divisible by 600 which is 5x5x2x2x2x3 2k+1 is odd, and only one of**k**or**k**+1 can be even so you need**k**or**k**+1 divisible by 8 one of**k**,**k**+1, and 2k+1 will always be divisible...4 Answers · Science & Mathematics · 18/12/2013

synthetic division 4 | 1 -

**k****k**8 ---------------- .....1 4 | 1.. -**k**.......**k**............ 8 ...____4____4(4-**k**)_____4[**k**+4(4-**k**)] .....1.. 4-**k**....**k**+4(4-**k**)....0 According to last column, 8 + 4[**k**+4(4-**k**)] = 0 4[**k**+4(4-**k**)] = -8 4k + 16(4 -**k**) = -8 4k + 64 - 16k = -8 -12k = -72...1 Answers · Science & Mathematics · 09/11/2012

...you have written is evaluated like this: .030 = .22*(e^(-

**k**))*(.005) I think you intended the exponent to be ((-**k**)*.005) so you should...1 Answers · Science & Mathematics · 28/09/2013

y = x/(1 + kx) (1 + kx)y = x y + kxy = x kxy = x - y

**k**= (x - y)/(xy) Say, this formula looks familiar!7 Answers · Science & Mathematics · 08/02/2010

(

**k**- 3)² < 4k (**k**- 8) k² - 6k + 9 < 4k² - 32k 3k² - 26**k**- 9...4 Answers · Science & Mathematics · 05/10/2017

Decomposing 1/[

**k**(**k**+1)(**k**+2)], you have: A/**k**+ B/(**k**+1) + C/(**k**+2) = 1/[**k**(**k**+1.... Therefore: A(**k**+1)(**k**+2) + B(**k**)(**k**+2) + C(**k**)(**k**+1) = 1 which must hold true for all valid values of**k**. To determine...2 Answers · Science & Mathematics · 08/09/2007

y = x/(1 + kx) y(1 + kx) = x y + kxy = x kxy = x - y

**k**= (x - y)/(xy) I could have sworn I already answered this one!4 Answers · Science & Mathematics · 08/02/2010

##### Ad

related to**K**