Sort by

- Relevance
- |Time

...3 , 12) Plug this into the point-slope form for a line and solve for y. y -

**k**= m * (x - h) y - 12 = 7 * (x - 3) y - 12 = 7x - 21 y = 7x - 97 Answers · Science & Mathematics · 15/09/2019

... second one switches to counting tails (n = 5,

**k**= 2, p = 1/3, q = 2/3). The third wants *at least* 3 ...1 Answers · Science & Mathematics · 14/09/2019

... the cos(x) = 5 result since |cos(x)| ≤ 1 cos(x) = 1/2 x = ±π/3 ± 2

**k**π for 0 ≤ x < 2π, x = π/3, 5π/3 Ans: For 0...5 Answers · Science & Mathematics · 13/09/2019

h = kt+c at t=0, h = 2500 m slope =

**k**= –150 m/min h = –150t+c 2500 = –150•0 + c c = 2500 therefore equation is h = –150t + 2500 meters1 Answers · Science & Mathematics · 11/09/2019

... SOLUTION: I like to use this notation: C(n,

**k**) = n! / [(n -**k**)!**k**!] That would mean: C(n, n -**k**) = n! / [(n...;--> {A, B, C} So C(n,**k**) = C(n, n-**k**)6 Answers · Science & Mathematics · 12/09/2019

(x - h)^2 + (y -

**k**)^2 = r^2 (6 - h)^2 + (5 -**k**)^2 = r^2 (-3 - h)^2 + (2 -**k**)^2 = r^2 (-2 - h)^2 + (1 -**k**)^2 = r^2 (6 - h)^2 + (5 -**k**)^2 = (-3 - h...6k = 0 48 - 18 - 6k = 0 30 - 6k = 0 6k = 30**k**= 30/6**k**= 5 (6 - 1)^2 + (5 - 5)^2 = r^2...2 Answers · Science & Mathematics · 09/09/2019

...gt; and <b> are non-parallel, then j<a> +

**k**<b> = 0, if j =**k**= 0 If j = (m+n+1) and**k**= -(3n+2), then...2 Answers · Science & Mathematics · 06/09/2019

8 = 65536(1/2)^r 2^3 = (2^16)(1/2)^r (1/2)^-3 = (1/2)^-16 * (1/2)^r -3 = -16 + r r = 13 13 = log(1/

**k**)/log(1/2) 13 = log(base 1/2)(1/**k**) (1/2)^13 = 1/**k****k**= 81921 Answers · Science & Mathematics · 05/09/2019

...and 2 points. Set up a system of equations, solve for c and

**k**, then find T(0) 415 = 75 + c * e^(-10k) 340 = c * e^(-10k) 347 = 75 + c * e^(-20k...2 Answers · Science & Mathematics · 04/09/2019

30000 = 25000 * e^(0.0198 * t) 6 = 5 * e^(0.0198 * t) 1.2 = e^(0.0198 * t) ln(1.2) = 0.0198 * t t = ln(1.2) / 0.0198 t = ln(

**k**) / 0.0198 What is**k**equal to?2 Answers · Science & Mathematics · 03/09/2019