... SOLUTION: I like to use this notation: C(n,

**k**) = n! / [(n -**k**)!**k**!] That would mean: C(n, n -**k**) = n! / [(n...;--> {A, B, C} So C(n,**k**) = C(n, n-**k**)6 Answers · Science & Mathematics · 12/09/2019

y = 4x - 8 The inverse is: x = 4y - 8 x + 8 = 4y y = (x + 8) / 4 y = (1/4)x + 2 So

**k**= 23 Answers · Science & Mathematics · 28/08/2019

Answer

1 Answers · Science & Mathematics · 17/09/2019

(x - h)^2 + (y -

**k**)^2 = r^2 (6 - h)^2 + (5 -**k**)^2 = r^2 (-3 - h)^2 + (2 -**k**)^2 = r^2 (-2 - h)^2 + (1 -**k**)^2 = r^2 (6 - h)^2 + (5 -**k**)^2 = (-3 - h...6k = 0 48 - 18 - 6k = 0 30 - 6k = 0 6k = 30**k**= 30/6**k**= 5 (6 - 1)^2 + (5 - 5)^2 = r^2...2 Answers · Science & Mathematics · 09/09/2019

...and 2 points. Set up a system of equations, solve for c and

**k**, then find T(0) 415 = 75 + c * e^(-10k) 340 = c * e^(-10k) 347 = 75 + c * e^(-20k...2 Answers · Science & Mathematics · 04/09/2019

.... So you can reduce this to: kC3 / 10C3 kC3 =

**k**(**k**-1)(**k**-2) / 3! 10C3 = 10*9*8 / 3! When you divide, the 3! will cancel...2 Answers · Science & Mathematics · 01/09/2019

...guess that those deltas are difference operators, with Δy_

**k**= y_(**k**+1) - y_**k**and Δ²y_**k**= Δy_(**k**+1) - Δy_**k**...1 Answers · Science & Mathematics · 16/09/2019

...1), ... , X(8) has just two elements (a.

**k**.a. "states"): 1 and 2; so its transition...**k**)=2 and X(**k**+1)=2} = 4. #{**k**∈{1, ... , 7} : X(**k**)=2 and X(**k**+1)=1} = 1. Finally, recall that...1 Answers · Science & Mathematics · 16/09/2019

...0 < n/d < 1 . Take a positive number

**k**so that 1/**k**< n/d < 1/(**k**-1) . n/d - 1/**k**= (nk...2 Answers · Science & Mathematics · 01/09/2019

...sin(pi/12)^2 * cos(pi/12)^2 1/16 = (1 - cos(pi/12)^2) * cos(pi/12)^2 cos(pi/12)^2 =

**k**(1/16) = (1 -**k**) ***k**1 = 16 ***k*** (1 -**k**) 1 = 16k - 16k^2 16k^2 - 16k + 1 = 0**k**= (16...1 Answers · Science & Mathematics · 25/08/2019